B.Sc. II Semester

Paper VI (ELE-202), Digital Electronics-II

Ouestion Bank

- 1. With the help of neat logic diagram explain the working of S-R flip-flop using NAND gates only. Give its truth table and logic symbol.
- 2. With the help of neat logic diagram, explain the working of S-R flip-flop using NOR gates only. Give its truth table and logic symbol.
- 3. Describe the working of clocked SR flip flop using NOR gates. Explain how it is converted to D-type flip-flop.
- 4. Explain the working of negative edge triggered J-K flip flop with logic diagram. How is it converted to T-type flip-flop?
- 5. Explain the working of J-K flip flop with logic diagram using NAND gates only. Give its truth table and logic symbol.
- 6. Describe the working of 4-bit asynchronous counter with neat logic diagram. Draw its timing diagrams.
- 7. Describe the working of 3-bit synchronous counter with neat logic diagram. Draw its timing diagrams.
- 8. What is a decade counter? Explain the working of asynchronous decade counter with neat logic diagram. Draw its timing diagram.
- 9. What is a decade counter? Explain the working of synchronous decade counter with neat logic diagram. Draw its timing diagram.
- 10. Describe the working of R-2R ladder type D/A converter with the help of neat circuit diagram.
- 11. What is ROM? Explain in brief different types of ROM.
- 12. What is read/write memory? Explain static and dynamic RAMs.
- 13. With the help of neat logic diagram explain the working of parallel in serial out shift register.
- 14. With the help of neat logic diagram explain the working of parallel in parallel out shift register.
- 15. With the help of neat logic diagram explain the working of serial in serial out shift register.
- 16. With the help of neat logic diagram explain the working ring counter.
- 17. Draw the circuit diagram of DAC 0808 and explain its working.
- 18. Draw the circuit diagram of ADC 0801 and explain its working.
- 19. With a suitable diagram explain the working of successive approximation type analog to digital conversion.
- 20. With a suitable diagram explain the working of dual slope type analog to digital converter.

Multiple Choice Questions:

Chapter-I: Flip-flops:

1. In a sequentia	l circuit, the	output depends on						
a) Prese	nt inputs	b) Past inputs c) Pre	sent and past inpu	ts d) None of the above.				
2. A simple flip	flop is a							
a) 1-bit s	torage cell	b) 2-bit storage cell	c) 3-bit storage c	cell d) 4-bit storage cell				
3. In R-S flip flop the input conditions i) R=1, S=0 and ii) R=0, S=1 are known as								
a) Set and Reset b) Reset and Set c) Set and set d) Reset and reset								
4. In an R-S flip-flop, when R=S=1, the output is								
a) 1 b)0 c)infinite d) indeterminate								
5. In RS latch, the output is set to high, when								
a) R is high, S is low b) S is high, R is low c) R is high, S is high d) R is low, S is low								
6. In RS latch, the output is reset to low, when								
a) R is high, S is low b) S is high, R is low c) R is high, S is high d) R is low, S is low								
7. In a J-K flip-flop, a J=K=1 produce the inactive state. This statement is								
a) True	b) Fals	e						
		Chapter-II: (Counters					
1. The ripple counter functions as								
a) 2:1 counter b) n:1 counter c) 2n:1 counter d) 2 ⁿ counter								
2. The number of flip-flops required in a decade counter is								
a) 2 b) 3 `c) 4	d) 10						
3. A 3 flip-flop counter would divide the clock frequency by								
a) 3 b) 6 c) 8	d) 10						
4. A single clock pulse drives all the flip-flops in a								
a) Ripple counter b) Ring counter								
c) Synchronous counter d) asynchronous counter								
5. A binary cour	iter is made u	sing						
a) Latch	b) RS f	dip-flop c) JK	flip-flop d) D flip-flop				
6. The number of flip-flops required to build a mod-6 counter is								
a) 3 b) 4 c) 5	d) 6						
7. The highest co	ount in a 4-bi	t ripple counter is						
a) 32 b) 63 c)15	d)7						
8. The number of flip-flops required in a decade counter is								
) 3 `c) 4							

Chapter-III: Memories:

1. Memories are						
a) Volatile b) Non volatil		e c) Cheap and fast		d) Readily available		
2. Binary information	on can be stored	in				
a) A latch b) A register		c) A RAM	d) All of abo	ove		
3. Semiconductor m	nemories are					
a) Volatile		b) Non Volatile				
c) Volatile and small size		d) Non volatile and small size				
4. A semiconductor	ROM is basical	ly				
a) A combin	national circuit	b) A group of flip flops				
c) A sequen	tial circuit	d) None of the above				
5. The number of w	ords which can	be accessed by	y 6-bit address i	s		
a) 36 b) 48	3 c) 64 d) 72					
6. Find the odd mar	in the following	g				
a) ROM	b) RAM	c) PROM	d) EPROM			
7. The number of bi	its required to ad	ldress 512 me	mory locations	is		
a) 8 b) 9	c) 10 d) 12					
	Chapt	er-IV: A/D an	nd D/A Converte	ers		
1. In a 3 bit ladder v	with logic levels	of 0=0V and	1=5V, the analo	og output for digital input 101 is		
a) 1.0 V	a) 1.0 V b) 3.5V		d) 1.4V			
2. In a successive a	pproximation A/	D converter, t	he output of DA	AC relative to analog voltage		
should be						
a) less	b) more	c) equal	d) any thing			
3. The fastest of the	ADC is the					
a) Dual slop	e type b) Suc	ccessive appro	oximation ADC			
c) Flash AD	C d) Co	unter controlle	ed ADC			